Принцип работы бензонасоса инжекторного двигателя


Принцип работы инжектора, устройство системы + видео

Инжектор стал логичным развитием системы впрыска автомобиля, когда последующее усовершенствование карбюратора для выполнения экологических норм было нецелесообразным. Принудительное дозирование впрыскиваемого топлива превосходит карбюратор по экономичности, экологичности и мощностным характеристикам. Рассмотрим, принцип работы инжектора, а также устройство инжекторной системы питания.

Виды системы

Свое название инжекторная система впрыска топлива получила от устройства, которое отвечает за распыление бензина – инжектора (от англ. Injection – впрыск, injector – форсунка). Система питания такого типа устанавливалась на самолеты еще в 20-х годах прошлого столетия. Что примечательно, уже тогда это был непосредственный впрыск топлива в цилиндры двигателя. Основное внимание уделим развитию вариациям системы Motronic, в которой за подачу топлива и регулировку угла зажигания отвечает блок управления двигателем (далее ЭБУ или ECU).

Single Point fuel Injection

Одноточечный тип впрыска, более известный как моновпрыск, является переходной технологией, которая позволила многим автопроизводителям задешево перейти от карбюраторной системы питания к инжектору.

Иными словами, вместо карбюратора над впускным коллектором начал устанавливаться агрегат центрального впрыска топлива. Система имела ряд преимуществ, поскольку ЭБУ позволял более точно дозировать бензин.

Принцип работы инжектора построен на следующих элементах:

  1. – топливный бак с расположенным в нем топливным насосом;
  2. – фильтрующий элемент для очистки топлива;
  3. – центральный агрегат впрыска. 3а – датчик положения дроссельной заслонки (ДПДЗ); 3б – регулятор, отвечающий за давление топлива; 3с – форсунка инжектора; 3д – датчик температуры воздуха, поступающего во впускной коллектор; 3е – регулятор положения дроссельной заслонки (в простейших вариантах конструкции привод заслонки был связан с педалью акселератора тросовым приводом);
  4. – датчик температуры охлаждающей жидкости (ДТОЖ);
  5. – лямбда-зонд (кислородный датчик);
  6. – электронный блок управления двигателем.
Принцип работы

На схеме не показан один элемент, без которого работа механизма была бы невозможной, – датчик положения коленчатого вала. Именно ДПКВ позволяет ЭБУ рассчитывать количество воздуха, поступающего в двигатель. Напомним, что количество подаваемого топлива всецело зависит от массы воздуха, поступающего в цилиндры, иначе регулировать состав топливовоздушной смеси (ТПВС) для нормальной работы бензинового двигателя невозможно. На этапе создания двигателя конструкторами рассчитывается, сколько воздуха проходит при определенной нагрузке, то есть степени открытия дросселя, и на определенных оборотах двигателя. Данные заносятся в топливную карту двигателя, которая будет записана в ЭБУ. Впоследствии при работе двигателя блок управления фиксирует обороты с помощью ДПКВ, нагрузка определяется потенциометром дроссельной заслонки, что позволяет взять из топливной карты значение, соответствующее необходимому количеству топлива. Но система идеально может работать только в лабораторных условиях, поскольку на практике атмосферное давление зависит не только от положения над уровнем моря, но и от температуры, воздушный фильтр со временем забивается, пропуская через себя меньше воздуха, засоряется и сам дроссельный узел. Для коррекции используется датчик температуры воздуха, но роль его невелика. По-настоящему на состав смеси влияет лямбда-зонд, измеряющий количество кислорода в выхлопных газах. Если кислорода слишком много, ЭБУ понимает, что смесь необходимо обогатить, и наоборот.

Характеристика

Главное преимущество одноточечного впрыска – дешевизна реализации. Недостатки:

  • неравномерное наполнение цилиндров, что обусловлено месторасположением форсунки;
  • «мокрый» коллектор. При открытии форсунки бензин преодолевает долгий путь до камеры сгорания. Когда коллектор холодный, топливо не испаряется, а оседает на стенках, вследствие чего смесь необходимо сильно богатить;
  • лямбда-зонд хоть и позволяет корректировать ТПВС, но способ измерения массы воздуха в целом неэффективен.

Multi-Point fuel injection

Многоточечный впрыск стал значительным шагом вперед, по сравнению с одноточечным впрыском, поскольку позволил автомобилям вкладываться в нормы токсичности ЕВРО-3.

Одноточечный впрыск, ввиду неизлечимых болезней, обусловленных особенностями конструкции, мог выполнить только требования ЕВРО-2.

История эволюции систем впрыска автомобилей крайне интересна, но не она является главной темой этой статьи. Именно поэтому уделять внимание тонкостям работы таких систем управления двигателем с распределенным впрыском, как D-Jetronic, KE-Jetronic, K-Jetronic и L-Jetronic мы не будем. Устанавливать на авто перечисленные вариации перестали еще в начале 90-х, а поэтому встретить автомобиль с «живой» системой распределительного впрыска такого типа крайне сложно.

Главное отличие полноценного инжектора от моновпрыска – наличие 4-х форсунок, расположенных вблизи впускных клапанов. Компоненты инжекторного двигателя:

  1. – топливный насос, который в подавляющем большинстве случаев расположен в баке;
  2. – фильтр грубой очистки топлива;
  3. – регулятор давления топлива, от которого к баку идет магистраль обратки для слива лишнего топлива. В некоторых авто обратная магистраль отсутствует как таковая, а регулятор топлива находится рядом с насосом в баке;
  4. – форсунка. На рисунке сверху показано, как все форсунки соединены топливной рампой;
  5. – расходомер воздуха;
  6. – датчик температуры охлаждающей жидкости;
  7. – регулятор холостого хода (РХХ);
  8. – потенциометр, фиксирующий фактическое положение дроссельной заслонки (ДПДЗ);
  9. – датчик частоты вращения коленчатого вала (ДПКВ);
  10. – кислородный датчик;
  11. – ЭБУ;
  12. – распределитель зажигания.

Расчет массы воздуха

Помимо форсунок, особенностью системы является способ расчета массы воздуха. Существует всего 5 способов измерения количества воздуха, проходящего через дроссельную заслонку:

    • обороты/нагрузка. Применяется на одноточечной системе впрыска и в качестве резервного варианта для распределительного впрыска, если расходомер воздуха выходит из строя;
    • расходомер флюгерного типа. Применялся на системах управления двигателем Jetronic;
    • ДМРВ – датчик массового расхода воздуха. Принцип работы основывает на поддержании электрическим током постоянной температуры нагревательного элемента. Проходящий через ДМРВ воздух охлаждает элемент, что требует увеличения тока. При помощи преобразователя величина тока нагрева элемента преобразовывается в выходное напряжение. Между напряжением и массой поступившего воздуха существует зависимость, которая и позволяет ЭБУ рассчитать количество необходимого для подачи топлива;
    • MAP-сенсор – датчик давления во впускном коллекторе. ЭБУ, имея информацию о величине абсолютного давления во впускном коллекторе и дополнительно используя показания датчика температуры воздуха, рассчитывает цикловую подачу топлива;
    • датчик объема воздуха. Измеряется именно объем, который впоследствии пересчитывается в массу; на данный момент такой способ расчета воздуха не используется.

Характеристика

Преимущества распределительного впрыска на клапаны:

  • равномерное наполнение цилиндров;
  • использование ДМРВ или MAP-сенсора позволяет точно рассчитывать расход воздуха, что дает больше возможностей для регулировки ТПВС на всех режимах работы мотора.

Именно поэтому автомобили с полноценным инжектором всегда мощнее и экономичнее авто с одноточечным впрыском.

Direct injection

Непосредственный впрыск, являющийся разновидностью системы распределительного впрыска, – последнее слово в системах питания бензиновых двигателей. Главной особенностью прямого впрыска является подача топлива непосредственно в камеру сгорания.

GDI, FSI, D4 – аббревиатуры, использующиеся Mitsubishi, Volkswagen и Toyota, соответственно, для обозначения двигателей с непосредственным впрыском. Система питания таких ДВС больше походит на дизельные моторы, нежели на привычные всем ДВС цикла Отто. Устройство:

Чем обусловлена эффективность

Дороговизна и сложность производства, являющиеся главными недостатками прямого впрыска, с лихвой окупаются чрезвычайной экономичностью и мощностными характеристиками. Достигается это за счет того, что мотор может работать на 3-х основных вариантах топливной смеси (в качестве примера выбрана система GDI):

  • сверхбердная смесь. Топливо впрыскивается в конце такта сжатия и сгорает в непосредственной близости к свече зажигания, в то время как вокруг зоны сгорания в камере сгорания находится преимущественно чистый воздух либо смесь воздуха с выхлопными газами, за подачу которых отвечает EGR;
  • стехиометрическая. Топливо подается на такте впуска, хорошо перешивается с воздухом, образуя смесь близкую к идеальному пропорциональному соотношению (14,7/1) во всей камере сгорания;
  • мощностной режим, при котором ТПВС приготавливается в два этапа. Небольшое количество топлива подается на такте впуска, но основная порция впрыскивается в конце такта сжатия.

За счет подачи топлива в жидкой фазе непосредственно в камеру сгорания двигатели с прямым впрыском менее склонны к детонации, что позволяет повысить степень сжатия и увеличить КПД двигателя.

autolirika.ru

Инжекторная система — что это и как она работает

Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену карбюратору. Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.

Немного истории

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы питания появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжеторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологичности, конструкторы вернулись к инжекторной системе, но кардинально пересмотрели ее работу и конструкцию.

Чем хорош инжектор

Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то инжекторной системе бензин подается принудительно. Это самое кардинальное различие между этими системами.

Достоинствами инжекторных систем, относительно карбюраторных, такие:

  1. Экономичность расхода;
  2. Лучший выход мощности;
  3. Меньшее количество вредных веществ в выхлопных газах;
  4. Легкость пуска мотора при любых условиях.

И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.

Видео: Принцип работы системы питания инжекторного двигателя

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует три типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.
  1. Центральная

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

2. Распределенная

Распределенный впрыск топлива

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

3. Непосредственная

Система непосредственного впрыска топлива

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Конструкция и принцип работы инжектора

Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.

Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.

Система питания автомобилей ВАЗ 2108, 2109, 21099

К механической части инжектора относится:

  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого инжектора распределенного впрыска.

Видео: Инжектор

Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей.  Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. Все просто – при достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

Устройство электромагнитной форсунки

Современная же форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Электронная составляющая

Основным элементом электронной части системы является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  1. Лямбда-зонд . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
  2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
  3. Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
  4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
  5. Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
  6. Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
  7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
  8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;

Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Оцените статью:

Общий рейтинг 5,00 Загрузка...

avtomotoprof.ru

Система питания двигателя (топливная система)

Главным предназначением топливной системы автомобиля являются подача топлива из бака, фильтрация, образование горючей смеси и подача ее в цилиндры. Существует несколько типов топливных систем для автомобильных двигателей. Самая распространенная в 20-ом веке была карбюраторная система подачи смеси топлива. Следующим этапом стало развитие впрыска топлива при помощи одной форсунки, так называемый моновпрыск. Применение этой системы позволило уменьшить расход топлива. В настоящее время используется третья система подачи топлива – инжекторная. В этой системе топливо под давлением подается непосредственно в впускной коллектор. Количество форсунок равно количеству цилиндров.

Схема топливной системы: инжекторный и карбюраторный вариант

Устройство топливной системы

Все cистемы питания двигателя похожи, отличаются только способами смесеобразования. В состав топливной системы входят следующие элементы:

  1. Топливный бак, предназначен для хранения топлива и представляет собой компактную емкость с устройством забора топлива (насос) и, в некоторых случаях, элементами грубой фильтрации.
  2. Топливопроводы представляют собой комплекс топливных трубок, шлангов и предназначены для транспортировки топлива к устройству смесеобразования.
  3. Устройства смесеобразования (карбюратор, моновпрыск, инжектор) – это механизм в котором происходит соединение топлива и воздуха (эмульсии) для дальнейшей подачи в цилиндры в такт работы двигателя (такт впуска).
  4. Блок управления работой устройства смесеобразования (инжекторные системы питания) – сложное электронное устройство для управления работой топливных форсунок, клапанов отсечки, датчиков контроля.
  5. Топливный насос, обычно погружной, предназначен для закачивания топлива в топливопровод. Представляет собой электродвигатель, соединенный с жидкостным насосом, в герметичном корпусе. Смазывается непосредственно топливом и длительная эксплуатация с минимальным количеством топлива, приводит к выходу из строя двигателя. В некоторых двигателях топливный насос крепился непосредственно к двигателю и приводился в действие вращением промежуточного вала, или распредвала.
  6. Дополнительные фильтры грубой и тонкой очистки. Установленные фильтрующие элементы в цепь подачи топлива.

Принцип работы топливной системы

Рассмотрим работу всей системы в целом. Топливо из бака всасывается насосом и по топливопроводу через фильтры очистки подается в устройство смесеобразования. В карбюраторе топливо попадает в поплавковую камеру, где потом через калиброванные жиклеры подается в камеру смесеобразования. Смешавшись с воздухом смесь через дроссельную заслонку поступает в впускной коллектор. После открытия впускного клапана подается в цилиндр. В системе моно впрыска топливо подается на форсунку, которая управляется электронным блоком. В нужное время форсунка открывается, и топливо попадает в камеру смесеобразования, где, как и в карбюраторной системе смешивается с воздухом. Дальше процесс такой же, как и в карбюраторе.

В инжекторной системе топливо подается к форсункам, которые открываются управляющими сигналами от блока управления. Форсунки соединены между собой топливопроводом, в котором всегда находится топливо. Во всех топливных системах существует обратный топливопровод, по нему сливается излишек топлива в бак.

Система питания дизельного двигателя похожа на бензиновую. Правда, впрыск топлива происходит непосредственно в камеру сгорания цилиндра, под большим давлением. Смесеобразование происходит в цилиндре. Для подачи топлива под большим давлением применяется насос высокого давления (ТНВД).

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ: _____________________________________________________________________________________________________________________

autoustroistvo.ru

Принцип работы инжектора. Механический инжектор: принцип работы

В данной статье будет рассмотрен принцип работы инжектора и всех его основных узлов. Это достаточно перспективная система, которая на данный момент используется на всех автомобилях, независимо от их ценовой группы. Но ведь не стоит забывать о том, что впервые такие конструкции начали использоваться массово в 70-х и 80-х годах. Причем поначалу инжекторы были без использования электронных компонентов. Конечно, они могли присутствовать, но в минимальном количестве. Также стоит провести сравнение инжекторной и карбюраторной системы впрыска топлива.

Карбюратор против инжектора

Пожалуй, среди поклонников карбюратора остаются лишь те, которые любят стартовать со светофора. Причина – карбюратор позволяет на низах развить большой крутящий момент и мощность. Инжекторная система впрыска, даже идеально настроенная, рядом не стоит. Простота карбюратора и стоимость обслуживания тоже дают небольшое преимущество. Но вот что касается мощности и крутящего момента на высоких оборотах, то инжектор здесь выигрывает, причем с большим отрывом. Другими словами, при совершении обгона ваш автомобиль более приемистым будет в том случае, если установлен инжекторный впрыск. Также имеется возможность увеличения мощности путем установки турбины – устройства, способного нагнетать в систему впрыска избыточное давление воздуха. За счет этого повышается мощность двигателя во много раз. Конечно же, страдает ресурс, но чем не пожертвуешь ради эффектной езды?

Этапы развития инжекторного впрыска

На знаменитых «сигарах» «Ауди 100» использовался механический инжектор. Принцип работы его можно сравнить с системой топливоподачи в дизельных моторах. При помощи механического насоса и такого же привода форсунок производилась подача топливовоздушной смеси в камеры сгорания. Конечно, нельзя не упомянуть и о переходном звене – карбюраторах с электронным управлением. Использовались они на малом количестве автомобилей, причем исключительно японского производства. Жители Страны восходящего солнца очень любят разнообразные электронные гаджеты и по сей день. Но электронные карбюраторы были недолго популярны, в конце 80-х началась их эра и моментально закончилась. Между прочим, на автомобилях ВАЗ-2110, например, устанавливались карбюраторы без тросика «подсоса». Регулировка подачи воздуха осуществлялась автоматически, при помощи специальной заслонки, которая меняла свое положение по мере прогрева двигателя. Но сегодня большую популярность получили инжекторы, конструкции которых стали уже классическими. Вот их и стоит рассмотреть более детально, разобрать по составляющим.

Топливный насос

Это сердце всей топливной системы, так как с его помощью происходит циркуляция бензина. Состоит он из следующих элементов:

  1. Фильтр (в народе называется он «памперс», так как имеет завидное сходство).
  2. Электродвигатель постоянного тока.
  3. Помпа, приводимая в движение двигателем.
  4. Датчик уровня (конструктивно он объединен с топливным насосом).

Располагается насос непосредственно в баке, крепится при помощи гаек. Доступ к нему можно получить, если поднять заднее сиденье. Во всех автомобилях, будь то старенькая «десятка» либо же новая «японка», находится бензонасос именно под сиденьем. Конечно, снятие и установка будут производиться на всех машинах по-разному. От насоса к рампе проложена топливная магистраль. Она должна выдерживать большое давление, поэтому всегда следите за ее состоянием. Параллельно этой магистрали прокладывается трубка, которая возвращает избытки бензина обратно в бак. Довольно прост принцип работы бензонасоса. Инжектор функционирует за счет избыточного давления, создаваемого помпой.

Топливная рампа

Она устанавливается непосредственно на двигателе. Ее миссия заключается в том, чтобы удерживать в себе смесь бензина и воздуха под определенным давлением. Именно в ней происходит процесс соединения двух составляющих горючей смеси – бензина и воздуха. Причем пропорция всегда должна быть одинаковой – 14 частей воздуха на одну бензина. Только в таком случае двигатель будет работать максимально устойчиво, стабильно, экономично. К рампе произведено подключение таких механизмов, как дроссельная заслонка, электромагнитные форсунки, клапан сброса. Между прочим, именно в топливной рампе производится установка датчика давления топлива. Но про него и все остальные электронные компоненты будет рассказано дальше. Стоит заметить, что инжектор Вентури, принцип работы которого аналогичен рассмотренной в статье системе, имеет очень широкое применение, причем не только в автомобилях.

Форсунки

При помощи этих устройств производится подача топливовоздушной смеси в камеры сгорания всех цилиндров. Что же это за механизмы? Если вы знаете сносно конструкцию карбюраторов, то вспомните про электромагнитный клапан. Вот именно у него конструкция очень похожа на ту, которую вы можете видеть у форсунок. У них имеется обмотка, на которую подается постоянное напряжение. Игольчатый клапан при подаче напряжения открывает путь для прохождения топлива. Вся эта смесь под давлением распыляется в камеры сгорания. Обратите внимание, что форсунки должны распылять топливо таким образом, чтобы оно заполняло как можно больше камеру сгорания. Прост в понимании принцип работы форсунки инжектора, с ее помощью производится распыление. Топливовоздушная смесь в этот момент похожа на туман, в определенном объеме воздуха бензин находится во взвешенном состоянии. Следовательно, воспламенение происходит намного быстрее и лучше, нежели в случае с карбюраторной системой.

Дроссельная заслонка

Откройте капот автомобиля и внимательно посмотрите, что находится под ним. Вы увидите воздушный фильтр, который обычно прикручен к «телевизору» – передней части машины. От него идет небольшой патрубок, соединенный с отрезком пластиковой трубы, к которому подключены провода. Это датчик, который измеряет расход двигателем воздуха. А вот после него находится заслонка. С ее помощью происходит регулировка подачи воздуха в топливную рампу. Но тут нужно взглянуть на принцип работы инжектора. Ведь необходимо заметить, что при полностью закрытой заслонке небольшая часть воздуха все равно поступает в топливную систему, чтобы обеспечить оптимальное значение числа оборотов двигателя. И происходит это при помощи одного специфического исполнительного механизма – регулятора холостого хода (неправильно его называть датчиком, так как это шаговый электродвигатель, он никаких измерений не производит). Этот механизм открывает и закрывает при необходимости канал, по которому поступает воздух в топливную рампу.

Электронный блок управления

Без этого элемента инжекторной системы впрыска двигатель работать не сможет. Впрочем, иногда, даже если он и стоит, то это вовсе не означает, что двигатель будет заводиться и отменно работать. А дело все в том, что электронный блок управления построен на микропроцессоре. И он специально программируется для работы в качестве модуля управления всеми исполнительными устройствами на основании данных, полученных от датчиков. Следовательно, электронный блок управления должен иметь программу, написанную по определенному алгоритму. Причем этот алгоритм должен быть четким, чтобы микроконтроллер точно знал, что ему необходимо сделать, если, например, появится сигнал с датчика детонации, без которого не может существовать ни один современный инжектор. Принцип работы двигателя как с инжектором, так и с карбюратором остается неизменным.

Датчики в автомобиле

Чтобы правильно и своевременно подать топливо во все цилиндры, а также импульсы на электроды свечей зажигания, необходимо максимально точно считывать все параметры работы двигателя. В частности, важно знать, какая частота вращения у коленчатого вала. Также не помешают данные о том, какое давление в топливной рампе. Если же необходима остановка двигателя в автоматическом режиме при недостаточной смазке, то производится подключение датчика давления масла. При этом нужно прописывать его функции в алгоритме блока управления, конечно же, принцип работы инжектора в таком случае немного изменится. Также следует знать и про детонацию, ведь она многое может сказать о том, насколько правильно функционирует двигатель внутреннего сгорания. В современных автомобилях контролируется даже состав газа в выхлопной системе. Это происходит при помощи двух датчиков кислорода. И самое главное – это, конечно же, расход воздуха. Без знания этого параметра попросту невозможно осуществить правильное смесеобразование.

Заключение

Несмотря на кажущуюся сложность конструкции, принцип работы инжектора ВАЗ-2110, как и любого другого автомобиля, очень простой. Можно даже провести аналогию с обычным компрессором, оснащенным краскопультом. Конечно, это будет упрощенный вариант системы, форсунка только одна, блока управления сложного нет. Но суть примерно такая же. Проще разобраться с процессами, протекающими в двигателе с инжекторной системой впрыска, нежели исследовать разнообразные завихрения и перепады давления в карбюраторной. А если досконально изучить конструкцию, то вам не будет страшна никакая поломка датчиков всей системы управления.

fb.ru

Принцип работы инжекторного двигателя — описание системы

Ноя 6 2014

Инжекторные двигатели пришли на смену карбюраторным ДВС, так как являются более экономичными и в меньшей степени загрязняют окружающую среду.

Карбюратор не может обеспечивать настолько точное дозирование горючей смеси и момент впрыска топливной смеси, так как это делает электронный инжектор.

Принцип работы инжекторного двигателя состоит в следующем. В современных инжекторных двигателях у каждого цилиндра есть своя форсунка.

Все форсунки соединены в одну систему трубопроводом – так называемой топливной рампой. Топливо в систему подается при помощи электрического топливного насоса, который создает избыточное давление внутри системы.

Количество топлива, которое впрыскивается в цилиндр, момент открытия форсунки – все это определяет электронная система, которая учитывает одновременно множество факторов. И на основе анализа поступающих данных, она корректирует работу форсунки.

Система, которая анализирует ситуацию, называется контроллер. Контроллер связан с датчиками, которые дают информацию о разных параметрах, которые важны для режима работы двигателя.

На разных моделях автомобилей количество датчиков может изменяться, однако, основные датчики установлены на всех инжекторных двигателях и считывают информацию о:

• частоте вращения и положении коленвала; • массовом расходе воздуха, ДВС; • температуре жидкости охлаждения; • положении дроссельной заслонки; • детонации в двигателе; • напряжении в бортовой электросети; • скорости автомобиля.

Для того чтобы двигатель работал в оптимальном режиме система должна обеспечить правильный момент подачи топлива в цилиндры, правильное количество топлива.

Система должна составить оптимальную пропорцию бензина и воздуха, доставить эту смесь в цилиндры и вовремя подать искру. Но перед этим система определяет момент, когда искра должна появиться в цилиндрах. Многие действия выполняются исполнительными механизмами, но некоторые выполняют датчики-контролеры.

Как только контроллер получает определенную информацию, он начинает управлять следующими системами:

• подача топлива (бензонасос и форсунки); • система зажигания; • система регулировки холостого хода; • система улавливания бензиновых паров; • вентилятор системы охлаждения; • системой диагностики.

Принцип работы инжекторного двигателя состоит в том, что инжекторная система способна мгновенно корректировать параметры подачи топлива в зависимости от режимов работы мотора.

Именно этим обеспечивается экономичность ДВС. Значительно упрощается запуск двигателя в любых погодных условиях и температурах воздуха.

Устройство системы распределенного впрыска, управляемого электроникой, представлено на рисунке ниже.

К числу основных узлов относятся электробензонасос (2), который забирает бензин из топливного бака (1) и через фильтр (3) подает его в топливный распределитель (4), откуда бензин поступает в рабочие (10) и пусковую (11) форсунки, а его излишек через демпфер давления (28) возвращается в топливный бак.

Остальное, в том числе и электронный блок управления (6), можно отнести к второстепенным узлам, хотя именно они и определяют функционирование системы впрыска.

На рисунке видны также узлы системы зажигания, что не случайно, поскольку электронное управление позволило объединить топливоподачу и зажигание в единую систему управления двигателем.

Система не требует ручной регулировки параметров впрыска топлива, что исключает ошибку при регулировках. Точная регулировка состава топливной смеси обеспечивает почти полное сгорание топлива, что делает инжекторные двигатели, более «чистыми» с экологической точки зрения.

Однако у ДВС с инжектором есть и недостатки:

• двигатели с инжектором более дорогостоящие; • многие элементы системы не ремонтируются, а подлежат замене; • двигатели с инжекторами более чувствительны к некачественному топливу; • стоимость ремонта значительно выше, чем у карбюраторных двигателей.

webavtocar.ru

Принцип работы инжектора

Большинство автомобилей оснащено инжекторной системой питания, которая была изобретена еще в середине прошлого века. Пришла эта система на смену карбюраторам, которые имели большое количество недостатков, да и просто изжили себя, как механизм, в силу различных причин. Поэтому нет сомнений в том, что инжектор – это огромный шаг вперед в области автомобилестроения. Как создавался инжектор, принцип его работы, плюсы и минусы инжектора – обо всем этом мы поговорим сегодня.

Краткая история появления инжекторов

Точкой отсчета времени существования инжекторов начинается с 1951 года. Впервые инжекторная система была установлена на 2-х тактный мотор, а затем, в 1954 году уже на 4-х тактный. Первыми, кто установил инжектор на автомобиль, были специалисты компании Bosch.

Увидев, насколько инжектор лучше в сравнении с традиционным для того времени карбюратором, многие производители начинают оснащаться свои машины данной новинкой, что очень пришлось по душе многим покупателям. Конечно, ведь инжектор значительно превосходит карбюратор по своим характеристикам – удобство управления, надежность, стабильнее работа двигателя, нет необходимости постоянной настройки и чистки, что характерно для карбюратора. Поэтому, 70-е годы ознаменовались массовым вытеснением карбюраторов из подкапотного пространства авто.

Так, в 21 веке 99% автопроизводителей устанавливают на машины инжекторные системы питания, карбюраторы уже канули в лету.

Что такое инжектор?

Инжектор, как вы уже догадались, является разновидностью системы впрыска топлива. Характерной особенностью этой системы является подача топлива в цилиндры двигателя через форсунку. Ранней версией инжектора был «моновпрыск», то есть когда одна форсунка осуществляет впрыск во все цилиндры двигателя. Сейчас данная система практически не используется, ей на смену пришел «распределенный впрыск топлива», то есть по форсунке на каждый цилиндр двигателя.

Инжектор – это еще и сложнейший электронный механизм, который имеет в своем составе:

  • электронный блок управления, своего рода мозг;
  • форсунки, которые и осуществляют впрыск топлива;
  • обилие датчиков, благодаря которым и осуществляется управление;
  • электрический бензонасос.

А теперь постараемся максимально просто описать работу инжектора. С помощью большого количества датчиков: ДМРВ (датчик массового расхода воздуха), датчик положения коленчатого вала, температуры охлаждающей жидкости, подачи топлива и т.д., система принимает решение и управляет всем процессом работы двигателя: зажиганием, подачей топлива, распределением его между форсунками, своевременный впрыск топлива в цилиндры, регулирует обороты и т.д. То есть инжектор – это полностью автоматизированная система, в отличие от карбюратора. Но вместе с этим, инжекторная система, какой бы превосходной она не была, имеет определенный перечень недостатков.

Слабые стороны инжектора

Если сравнивать с тем же карбюратором, то инжектор проигрывает в том плане, что его комплектующие части имеют высокую стоимость. Большое количество электроники всегда являлось уязвимым местом, поэтому многие части инжекторной системы даже не поддаются ремонту, а только лишь замене. Так как инжектор технически сложное устройство, немало стоят и ремонтные работы по регулировке, устранению неисправностей или просто чистке инжектора. Кроме того, инжектор очень чувствителен к качеству топлива и, если вы заправились некачественным бензином, велика вероятность возникновения такой проблемы, как детонация, которая очень опасна для двигателя. Напомним, что при карбюраторной системе питания двигатель просто будет иметь неустойчивую работу и повышенный расход, но не детонацию. Но инжекторная система имеет и огромное количество достоинств, что, в принципе и привлекает многих автомобилистов.

К таковым необходимо отнести расход топлива, инжектор гораздо экономичнее карбюратора притом, что способен развивать большую динамику двигателя. Неоспоримым преимущество инжектора является и легкий запуск в зимнюю пору года. Вспомните, как мучились наши отцы-деды, пытаясь на морозе запустить карбюраторный двигатель. Инжектор, как правило, запускается так же легко, как и летом. Наконец, инжекторный двигатель гораздо мягче и ровнее работает, реже страдает проблемой «плавающих оборотов», что для карбюратора является вполне привычным.

Как видим, инжектор – это очередная ступень в эволюции двигателей внутреннего сгорания. Конечно, есть как приверженцы, так и противники инжекторов, но все же, если поставить человека перед выбором – автомобиль с инжектором, или аналог, но с карбюратором, большинство выберет именно инжекторный автомобиль, как более надежный и современный.

pro-tachku.ru

Система подачи топлива. Инжекторные системы, описание и принцип работы

Система подачи топлива нужна для поступления горючего из бензобака, его дальнейшей фильтрации, а также образования кислородно-топливной смеси с ее передачей в цилиндры двигателя. В настоящее время есть несколько видов топливных систем. Наиболее распространенной в 20-м веке была карбюраторная, но сегодня все большей популярностью пользуется инжекторная система. Существовала еще и третья – моновпрыск, которая была хороша лишь тем, что позволяла несколько сократить расход горючего. Давайте более подробно рассмотрим инжекторную систему и разберемся с ее принципом работы.

Общие положения

Большинство современных систем питания двигателя топливом схожи. Отличие может заключаться только на этапе смесеобразования. В состав топливной системы входят следующие узлы:

  1. Топливный бак – компактное изделие, имеющее насос и фильтр для очистки от механических частиц. Основное назначение – хранение топлива.
  2. Топливопроводы образуют комплекс шланг и трубок для перемещения горючего от бака к системе смесеобразования.
  3. Устройство смесеобразования. В нашем случае будет идти речь об инжекторе. Данный узел предназначен для получения эмульсии (воздушно-топливной смеси) и подачи ее в цилиндры в такт работы мотора.
  4. Блок управление системой смесеобразования. Устанавливается только на инжекторных двигателях, что обусловлено необходимостью контроля датчиков, форсунок и клапанов.
  5. Топливный насос. В большинстве случаев используется погружной вариант. Представляет собой электродвигатель небольшой мощности, который соединяется с жидкостным насосом. Смазка реализуется горючим, а длительное использование ТС с количеством топлива менее 5 литров может привести к выходу электродвигателя из строя.

Если говорить вкратце, то инжектор – это точечная подача горючего через форсунку. Электронный сигнал приходит с блока управления. Несмотря на то, что инжектор имеет ряд существенных преимуществ перед карбюратором, он долго не использовался. Это было обусловлено технической сложностью изделия, а также низкой ремонтопригодностью деталей, вышедших из строя. В настоящее время точечные системы впрыска практически заменили карбюратор. Давайте более подробно рассмотрим, чем же так хорош инжектор и каковы его особенности.

Особенности топливного оборудования

Автомобиль всегда являлся объектом внимания защитников экологии. Отработанные газы выпускаются непосредственно в атмосферу, что чревато ее загрязнением. Диагностика топливной системы показала, что количество выбросов при неверном смесеобразовании увеличивается в разы. По этой простой причине было принято решение устанавливать каталитический нейтрализатор. Однако это устройство показывало хорошие результаты только при качественной эмульсии, а в случае каких-либо отклонений его эффективность значительно падала. Было принято решение заменить карбюратор на более точную систему впрыска, которой являлся инжектор. Первые варианты включали в себя большое количество механических составляющих и, согласно исследованиям, такая система становилась все хуже по мере эксплуатации ТС. Это было вполне закономерно, так как важные узлы и рабочие органы загрязнялись и выходили из строя.

Для того чтобы система впрыска смогла сама себя корректировать, был создан электронный блок управления (ЭБУ). Наряду с вмонтированным лямба-зондом, который расположен перед каталитическим нейтрализатором, это давало хорошие показатели. Можно с уверенностью говорить о том, что цены на топливо сегодня довольно высокие, а инжектор хорош как раз тем, что позволяет экономить бензин или дизель. Помимо этого есть следующие плюсы:

  1. Увеличение эксплуатационных характеристик мотора. В частности увеличенная мощность на 5-10%.
  2. Улучшение динамических показателей транспортного средства. Инжектор более чувствителен к изменению нагрузок и сам корректирует состав эмульсии.
  3. Оптимальная топливно-воздушная смесь уменьшает количество и токсичность отработанных газов.
  4. Инжекторная система легко запускается независимо от погодных условий, что является существенным достоинством перед карбюраторными двигателями.

Инжекторная система подачи топлива и ее устройство

Прежде всего стоит отметить тот факт, что современные впрысковые двигатели оснащаются форсунками, количество которых равно количеству цилиндров. Между собой форсунки соединяются рампой. Там горючее содержится под небольшим давлением, а создает его электрический прибор – бензонасос. Количество впрыскиваемого горючего напрямую зависит от продолжительности открытия форсунки, что определяется блоком управления. Для этого снимаются показатели с различных датчиков, которые установлены по всему ТС. Сейчас мы рассмотрим основные из них:

  1. Датчик расхода воздуха. Служит для определения наполненности цилиндров воздухом. В случае поломки показания игнорируются, а в качестве основных показателей берутся табличные данные.
  2. Датчик положения дроссельной заслонки отражает нагрузку на двигатель, которая обусловлена положением дросселя, циклового наполнения воздухом и оборотов ДВС.
  3. Датчик температуры хладгена. При помощи данного контроллера реализуется управление электровентилятором и коррекция топливоподачи, а также зажигания. В случае неисправности мгновенная диагностика топливной системы необязательна. Температура берется в зависимости от длительности работы ДВС.
  4. Датчик положения коленчатого вала (коленвала) нужен для синхронизации системы в целом. Контроллер рассчитывает не только обороты двигателя, но и его положение в определенный момент времени. Так как он является полярным датчиком, то при его неисправности дальнейшая эксплуатация ТС не является возможной.
  5. Датчик кислорода нужен для определения % кислорода в выбрасываемых в атмосферу газах. Информация с этого контроллера передается на ЭБУ, который в зависимости от показаний корректирует эмульсию.

Стоит обратить внимание на то, что не все ТС с инжектором комплектуются датчиком кислорода. Их имеют только те авто, которые оснащаются каталитическим нейтрализатором с нормами токсичности «Евро-2» и «Евро-3».

Типы инжекторных систем: одноточечный впрыск

В настоящее время активно используются все системы. Они классифицируются в зависимости от количества форсунок и места подачи горючего. Всего есть три системы впрыска:

  • одноточечный (моновпрыск);
  • многоточечный (распределительный);
  • непосредственный.

Для начала давайте рассмотрим системы одноточечного впрыска. Они были созданы сразу после карбюраторных и считались более совершенными, однако в настоящее время постепенно теряют свою популярность ввиду многих причин. Есть несколько неоспоримых преимуществ таких систем. Основные заключаются в существенной экономии топлива. Учитывая, что цены на топливо сегодня немаленькие, такой инжектор является актуальным. Интересно то, что эта система содержит несколько меньше электроники, поэтому является более надежной и стабильной. Когда информация с датчиков передается на контрольный элемент, параметры впрыска тут же меняются. Весьма интересным является то, что практически любой карбюраторный двигатель можно переделать под одноточечный впрыск без существенных конструкционных изменений. Основной недостаток таких систем заключается в низкой приемистости ДВС, а также оседании существенного количества топлива на стенках коллектора, хотя данная проблема была присуща и карбюраторным моделям.

Так как форсунка в данном случае всего одна, то располагается она на впускном коллекторе на месте карбюратора. Так как форсунка стояла в хорошем месте и постоянно находилась под потоком холодного воздуха, то ее надежность была на высшем уровне, да и конструкция была предельно простой. Промывка топливной системы с одноточечным впрыском не занимала много времени, так как достаточно было продуть лишь одну форсунку, но повышенные экологические требования привели к тому, что начали разрабатывать другие, более современные системы.

Системы многоточечного впрыска

Распределенный впрыск считается более современным, сложным и менее надежным. В данном случае каждый цилиндр оснащается изолированной форсункой, которая располагается во впускном коллекторе в непосредственной близости от впускного клапана. Следовательно, подача эмульсии осуществляется отдельно. Как было отмечено выше, при таком впрыске мощность ДВС можно увеличить до 5-10%, что будет заметно при движении на дороге. Еще один интересный момент: данная инжекторная система подачи топлива хороша тем, что форсунка располагается очень близко к впускному клапану. Это минимизирует оседание горючего на стенках коллектора, благодаря чему можно добиться существенной экономии топлива.

Существует несколько типов многоточечного впрыска:

  1. Одновременный – открытие всех форсунок происходит в одно время.
  2. Попарно-параллельный – открытие форсунок парами. Одна форсунка открывается в такт впуска, а вторая перед тактом выпуска. В настоящее время такая система используется только в момент аварийного запуска ДВС в случае поломки фазы (датчика положения коленвала).
  3. Фазированный – каждая форсунка управляется отдельно, а открывается перед тактом впуска.

В данном случае система довольно сложная и полностью полагается на точность работы электроники. Например, промывка топливной системы будет требовать гораздо больше времени, так как нужно промыть каждую форсунку. А сейчас пойдем дальше и рассмотрим еще один популярный вид впрыска.

Непосредственный впрыск

Инжекторные автомобили с такими системами можно считать наиболее экологичными. Основная цель внедрения этого способа впрыска заключается в улучшении качества смеси горючего и незначительном увеличении КПД двигателя транспортного средства. Основные достоинства такого решения заключаются в следующем:

  • тщательное распыление эмульсии;
  • образование высококачественной смеси;
  • эффективное использование эмульсии на различных этапах работы ДВС.

Исходя из этих преимуществ, можно говорить о том, что такие системы экономят топливо. Особенно это заметно при спокойной езде в городских условиях. Если сравнивать два автомобиля с одинаковым объемом двигателя, но разными системами впрыска, например, непосредственный и многоточечный, то заметно лучшие динамические характеристики будут у непосредственной системы. Отработанные газы менее токсичны, а взятая литровая мощность будет несколько выше за счет охлаждения воздуха и того, что давление в топливной системе несколько увеличено.

Но стоит обратить внимание на чувствительность непосредственных систем впрыска к качеству горючего. Если брать во внимание стандарты России и Украины, то содержание серы должно быть не выше 500 мг на 1 литр горючего. В это же время европейские стандарты подразумевают содержание этого элемента 150, 50 и даже 10 мг на литр бензина или дизеля.

Если вкратце рассматривать данную систему, то она выглядит следующим образом: форсунки располагаются в головке блоков цилиндра. Исходя из этого, впрыск осуществляется непосредственно в цилиндры. Стоит заметить, что данная инжекторная система подходит для многих бензиновых двигателей. Как было отмечено выше, используется высокое давление в топливной системе, под которым подается эмульсия непосредственно в камеру сгорания, минуя впускной коллектор.

Система впрыска топлива: езда на обедненной смеси

Немного выше мы с вами рассмотрели непосредственный впрыск, который впервые был использован на автомобилях марки «Митсубиси», которая имела аббревиатуру GDI. Давайте вкратце рассмотрим один из основных режимов – работу на обедненной смеси. Суть ее заключается в том, что транспортное средство в этом случае работает при небольших нагрузках и умеренных скоростях до 120 километров в час. Впрыск топлива осуществляется факелом в заключительном этапе сжатия. Отражаясь от поршня, горючее смешивается с воздухом и попадает в зону свечки зажигания. Получается так, что в камере смесь значительно обедняется, тем не менее ее заряд в районе свечи зажигания можно считать оптимальным. Этого хватает для его воспламенения, после этого загорается и остальная эмульсия. По сути, такая система впрыска топлива обеспечивает нормальную работу ДВС даже при соотношении воздух/топливо – 40:1.

Это весьма эффективный подход, позволяющий значительно экономить горючее. Но стоит обратить внимание, что остро встал вопрос нейтрализации отработанных газов. Дело в том, что катализатор неэффективен, так как образуется оксид азота. В этом случае используется рециркуляция отработанных газов. Специальная система ERG позволяет разбавить эмульсию отработанными газами. Это несколько снижает температуру горения и нейтрализует образование оксидов. Тем не менее такой подход не позволят увеличивать нагрузку на двигатель. Для частичного разрешения проблемы используется накопительный катализатор. Последний крайне чувствителен к горючему с высоким содержанием серы. По этой причине требуется периодическая проверка топливной системы.

Однородное смесеобразование и 2-стадийный режим

Мощностной режим (однородное смесеобразование) – идеальное решение для агрессивной езды в городских условиях, обгонов, а также движения по скоростным трассам и шоссе. В этом случае используется конический факел, он менее экономичный по сравнению с предыдущим вариантом. Впрыск осуществляется на такте впуска, а образованная эмульсия обычно имеет соотношение 14,7:1, то есть близкое к стехиометрическому. По сути, данная система автоматической подачи топлива точно такая же, как и распределительная.

Двухстадийный режим подразумевает впрыск топлива на такте сжатия, а также пуска. Основная задача – резкое повышение двигателя. Ярким примером эффективной работы такой системы является движение на малых оборотах и резкое нажатие на акселератор. В таком случае вероятность детонации значительно возрастает. По этой простой причине вместо одного этапа впрыск проходит в два.

На первом этапе впрыскивается небольшое количество горючего на такте впуска. Это позволяет несколько понизить температуру воздуха в цилиндре. Можно говорить о том, что в цилиндре будет находиться сверхбедная смесь в соотношении 60:1, следовательно, детонация невозможна как таковая. На заключительном этапе такта сжатия осуществляется впрыск струи горючего, которая доводит эмульсию до богатой в соотношении примерно 12:1. Сегодня можно говорить о том, что такая топливная система двигателя введена только для транспортных средств европейского рынка. Обусловлено это тем, что Японии не присущи большие скорости, следовательно, нет высоких нагрузок на двигатель. В Европе же большое количество скоростных шоссе и автобанов, поэтому водители привыкли ездить быстро, а это большая нагрузка на ДВС.

Еще кое-что интересное

Стоит обратить внимание на то, что, в отличие от карбюраторных систем, инжекторная требует того, чтобы была регулярная проверка топливной системы. Это обусловлено тем, что большое количество сложной электроники может дать сбой. В результате это приведет к нежелательным последствиям. К примеру, избыточный воздух в топливной системе приведет к нарушению составу эмульсии и неверному соотношению смеси. В дальнейшем это сказывается на двигателе, появляется нестабильная работа, выходят из строя контроллеры и т. п. По сути, инжектор – это сложная система, которая определяет, когда на цилиндры нужно подать искру, как доставить качественную смесь к блоку цилиндров или впускному коллектору, когда открывать форсунки и какое соотношение воздуха и бензина должно быть в эмульсии. Все эти факторы влияют на синхронизированную работу топливной системы. Интересно то, что без большинства контроллеров машина может исправно работать, при этом не будет существенных отклонений, так как имеются аварийные записи и таблицы, которые будут использоваться.

Экономичность работы ДВС в нашем случае определяется тем, насколько корректными будут полученные с контроллеров данные. Чем они точнее, тем менее возможны различные неисправности топливной системы. Важную роль играет и скорость срабатывания системы в целом. В отличие от карбюраторов тут не требуется ручная регулировка, а это исключает ошибки во время калибровочных работ. Следовательно, мы получим более полное сгорание смеси и лучшую с точки зрения экологии систему.

Заключение

В заключение стоит рассказать немного о недостатках, которые присущи инжекторным системам. Главный минус заключается в дороговизне ДВС. По большому счету, стоимость таких агрегатов будет выше примерно на 15%, что существенно. Но есть и другие минусы. К примеру, вышедший из строя клапан топливной системы в большинстве случаев не подлежит ремонту, что обусловлено нарушением герметичности, поэтому его нужно просто менять. Это касается и ремонтопригодности оборудования в целом. Некоторые узлы и детали гораздо проще купить новыми, нежели потратиться на их ремонт. Это качество не присуще карбюраторным ТС, где можно перебрать все важные узлы и восстановить их работоспособность без больших затрат времени и сил. Без всякого сомнения, электронная система подачи топлива ремонтируется большими силами и средствами. Сложная электроника вряд ли может быть восстановлена на первом попавшемся СТО.

Ну вот мы и поговорили с вами о том, что такое инжекторные системы. Как вы видите, это весьма интересная тема для разговора. Можно еще много рассказывать о том, чем хороши форсунки и возможность мгновенной корректировки работы двигателя. Но об основных моментах мы уже сказали. Помните о том, что топливная система бензинового двигателя должна регулярно осматриваться на возможные дефекты. К примеру, из-за низкого качества топлива, что собственно присуще нашей стране, часто забиваются форсунки. Из-за этого двигатель начинает работать с перебоями, падает мощность, смесь становится слишком обедненной или наоборот. Все это очень плохо сказывается на автомобиле в целом, поэтому нужен постоянный и регулярный контроль. Кроме того, старайтесь заправляться только тем бензином, который советует производитель вашего ТС.

fb.ru


Смотрите также